MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
| Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
|---|---|---|---|---|---|
| Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
| Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
| Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
| Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ G* = = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS. EM :
O princípio de exclusão de Pauli pode ser deduzido a partir da hipótese de que um sistema de partículas só pode ocupar estados quânticos anti-simétricos. De acordo com o teorema spin-estatística, sistemas de partículas idênticas de spin inteiro ocupam estados simétricos, enquanto sistemas de partículas de spin semi-inteiro ocupam estados anti-simétricos; além disso, apenas valores de spin inteiros ou semi-inteiros são permitidos pelos princípio da mecânica quântica.
Como discutido no artigo sobre partículas idênticas, um estado anti-simétrico no qual uma das partículas está no estado (nota) enquanto a outra está no estado é
No entanto, se e são exatamente o mesmo estado, a expressão acima é identicamente nula:
Isto não representa um estado quântico válido, porque vetores de estado que representem estados quânticos têm obrigatoriamente que ser normalizáveis, isto é devem ter norma finita. Em outras palavras, nunca poderemos encontrar as partículas que formam o sistema ocupando um mesmo estado quântico.
A equação de Pauli , também conhecida como Equação Schrödinger-Pauli, é uma formulação da Equação de Schrödinger para um spin-partícula que leva em consideração a interação da rotação de uma partícula com o campo eletromagnético. Essas situações são os casos não-relativísticos da Equação de Dirac, onde as partículas em questão tem uma velocidade muito baixa para que os efeitos da relatividade tenham importância, podendo ser ignorados.
A equação de Pauli foi formulada por Wolfgang Pauli no ano de 1927.
Detalhes[editar | editar código-fonte]
A equação de Pauli é mostrada como:
Onde:
- é a massa da partícula.
- é a carga da partícula.
- é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
- é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são:
- é o vetor de três componentes do potencial magnético.
- é o potencial escalar elétrico.
- são os dois componentes spinor da onda, podem ser representados como .
De forma mais precisa, a equação de Pauli é:
Mostra que o espaço Hamiltoniano (a expressão entre parênteses ao quadrado) é uma matriz operador dois-por-dois, por conta das matrizes de Pauli.
Matematicamente, o eletromagnetismo é unificado com as interações fracas como um campo de Yang-Mills com um grupo de calibre SU(2) × U(1) , que descreve as operações formais que podem ser aplicadas aos campos de calibre eletrofracos sem alterar a dinâmica do sistema. Estes domínios são os campos de isospin fraco W1, W2, e W3, e o campo de hipercarga fraca B. Essa invariância é conhecida como simetria eletrofraca.
Os geradores de SU(2) e U(1) recebem o nome de isospin fraco (chamado de T) e hipercarga fraca (chamada de Y), respectivamente. Estes então dão origem aos bósons de calibre que medeiam as interações eletrofracas - os três bósons W de isospin fraco W1, W2, e W3 e o bóson B de hipercarga fraca, respectivamente, todos os quais são "inicialmente" sem massa. Esses ainda não são campos físicos, antes da quebra espontânea da simetria e do mecanismo de Higgs associado.
No modelo padrão, os bósons W± e Z0 e o fóton são produzidos por meio da quebra espontânea de simetria eletrofraca SU(2) × U(1)Y a U(1)em, efetuada pelo mecanismo de Higgs (ver também bóson de Higgs), um elaborado fenômeno teórico de campo quântico que "espontaneamente" altera a realização da simetria e reorganiza os graus de liberdade.[6][7][8][9]
A carga elétrica surge como uma combinação linear (não trivial) de Y (hipercarga fraca) e o componente T3 do isospin fraco () que não se acopla ao bóson de Higgs - ou seja, o Higgs e o campo eletromagnético não têm efeito um sobre o outro no nível das forças fundamentais ("nível de árvore"), enquanto qualquer outra combinação linear da hipercarga e do isospin fraco irá interagir com o Higgs. Isso causa uma separação aparente entre a força fraca, que interage com o Higgs, e o eletromagnetismo, que não interage. Matematicamente, a carga elétrica é uma combinação específica da hipercarga e T3 delineada na figura.
U(1)em (o grupo de simetria do eletromagnetismo) é definido como o grupo gerado por esta combinação linear especial, e a simetria descrita por este grupo é ininterrupta, uma vez que não interage diretamente com o Higgs (mas o faz por meio de flutuações quânticas).
A quebra espontânea de simetria acima faz com que os bósons W3 e B se aglutinem em dois bósons físicos diferentes com massas diferentes - o bóson Z0 e o fóton (γ),
onde θW é o ângulo de mistura eletrofraca. Os eixos que representam as partículas, essencialmente apenas foram rodados no plano (W3, B) pelo ângulo θW. Isso também introduz uma incompatibilidade entre as massas das partículas
Z0
e
W±
(denotadas como MZ e MW , respectivamente),
Os bósons W1 e W2, por sua vez, combinam-se para produzir bósons massivos carregados
Lagrangiano[editar | editar código-fonte]
Antes da quebra de simetria eletrofraca[editar | editar código-fonte]
O Lagrangiano para as interações eletrofracas é dividido em quatro partes antes que a quebra de simetria eletrofraca se manifeste,
O termo descreve a interação entre os três bósons vetoriais W e o bóson vetorial B,
- ,
onde () e são os tensores de intensidade de campo para os campos de calibre de isospin fraco e hipercarga fraca.
é o termo cinético para o Modelo Padrão de férmions. A interação entre os bósons de calibre e os férmions se dão pela derivade covariante de calibre,
- ,
onde o subscrito i percorre as três gerações de férmions; Q, u e d são os campos de quarks correspondendo ao dubleto levógiro, singleto dextrógiro up, e singleto dextrógiro down; e L e e são os campos de elétrons do dubleto levógiro e singleto dextrógiro. A barra de Feynman significa a contração do quadri-gradiente com as matrizes de Dirac
e a derivada covariante é (excluindo o campo de calibre do glúon para a interação forte)
Aqui é a hipercarga fracais e são os componentes do isospin fraco.
O termo descreve o campo de Higgs e suas interações consigo mesmo e com os bósons de calibre,
O termo descreve a interação de Yukawa com os férmions,
e gera suas massas, manifestas quando o campo de Higgs adquire um valor esperado do vácuo diferente de zero, discutido a seguir.
Depois da quebra de simetria eletrofraca[editar | editar código-fonte]
O Lagrangiano se reorganiza à medida que o bóson de Higgs adquire um valor esperado do vácuo diferente do zero, ditado pelo potencial da seção anterior. Como resultado dessa reescrita, a quebra de simetria se torna manifesta. Na história do universo, acredita-se que isso tenha acontecido logo após o big bang quente, quando o universo estava a uma temperatura de 159,5±1,5 GeV[10] (assumindo o Modelo Padrão da física de partículas).
Devido à sua complexidade, este Lagrangiano é melhor descrito dividindo-o em várias partes como segue.
O termo cinético contém todos os termos quadráticos da Lagrangiana, que incluem os termos dinâmicos (as derivadas parciais) e os termos de massa (visivelmente ausentes da Lagrangiana antes da quebra de simetria)
onde a soma percorre todos os férmions da teoria (quarks e léptons), e os campos , , , and são dados como
com ‘’ a ser substituído pelo campo relevante (, , ), e f abc pelas constantes de estrutura do grupo de calibres apropriado.
As componentes do Lagrangiano para a corrente neutra e para a corrente carregada contêm as interações entre os férmions e os bósons de calibre,
onde A corrente eletromagnética é
- ,
onde são as cargas elétricas dos férmions. A corrente neutra fraca é
onde é o isospin fraco dos férmions.
A parte da corrente carregada da Lagrangiana é dada por
onde contém os termos de auto interação de três e quatro pontos de Higgs,
contém as interações de Higgs com os bósons vetoriais de calibre,
contém as auto interações de três pontos de calibre,
/ G* = = [ ] ω , , .= contém as auto interações de quatro pontos de calibre,
/ G* = = [ ] ω , , .=
contém as interações Yukawa entre os férmions e o campo de Higgs,
Note os fatores nos acoplamentos fracos: esses fatores projetam os componentes levógiros dos campos de spinor. É por isso que se diz que a teoria eletrofraca é uma teoria quiral.
Comentários
Postar um comentário